
Inadequate COVID-19 testing capabilities is producing 
testing data that cannot be reliably compared across coun-
tries or across jurisdictions within low- and middle-income 
countries (LMICs). This is hampering the ability of LMICs 
to devise timely and effective policy responses, such as 
identifying hotspots and spatially targeting public health re-
sponses or economic relief. Data defi ciencies also hamper 
global resource allocation. International bodies such as the 
World Health Organization need comparative information 
on disease risk across countries, to be able to direct sup-
port to regions at greater risk.

We develop a methodology to make indirect inferences 
about the spatial distribution of COVID-19 risk using the 
insight that migration is a primary driver of disease spread 
across jurisdictional borders. We use bilateral migration 
fl ows and prevalence of COVID-19 cases in all migration 
destinations (such as Italy, Spain, United States, Singapore, 
and South Korea) to construct a country-level index of 
COVID-19 risk exposure. We then use sub-district and mu-
nicipality level data on the origins of migrants, and airport 
disembarkation data on recent returnees, to create sub-na-
tional heat maps of COVID-19 risk within Bangladesh and 
the Philippines. We validate our indices by comparing them 
to data on confi rmed cases, COVID- 19 deaths, location of 
quarantines and distress calls to a government hotline. We 
use multiple data sources in Bangladesh to evaluate the 
broad applicability of our method to other LMICs where 
only a subset of such data may be publicly accessible. Our 
analysis proceeds in the following steps:

1. We combine the United Nations (2017) database 
of country-pair migration links with Johns Hopkins 
CSSE data on COVID-19 outbreak intensity at each 

migration destination. We construct an index of 
COVID-19 risk exposure for every country, using the 
number of emigrants from that country to COVID-af-
fected destinations to infer the likelihood that return 
migrants are now bringing back the disease to each 
‘home’ country.

2. We validate this COVID-19 exposure index by 
comparing it to the number of confi rmed COVID-19 
cases through testing, as well as to the number of 
COVID-deaths (given the aforementioned limitation 
of testing data). There are strong positive correla-
tions between our index and both confi rmed cases 
and deaths, in the order of +0.66 to +0.72. The 
strong predictive power of our index survives even 
after controlling for a broad set of country-character-
istics that can proxy for within-country transmission 
of disease after COVID-19 importation via migrants.

Next, we apply the same insight to create sub-na-
tional COVID-risk-exposure indices for Bangladesh 
utilizing data on district and sub-district origins of 
emigrants to COVID- affected destinations.

a. The fi rst index utilizes airport disembarkation 
card data collected by the Civil Aviation Author-
ity of Bangladesh (CAAB) from arriving pas-
sengers during December 2019 - March 2020. 
Returnees’ districts of origin strongly predict 
subsequent quarantines (correlation +0.52) and 
distress calls to a government hotline from those 
districts (correlation +0.77).

b. We show that district origins of airport re-
turnees are strongly correlated with the migra-
tion permits handed out to people from those 
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districts by the government in the previous fi ve 
years (correlation +0.73). The permit data has 
fi ne-grained addresses, which allow us to create 
a sub-district-level risk exposure index. This is 
more useful for precise targeting of policy. That 
index correlates well (+0.47) 

with distress calls to government hotlines at the 
sub-district level.

c. Moreover, district-level returnee numbers are 
also predicted by migrants from those dis-
tricts identifi ed in the nationally representative 
Household Income and Expenditure Survey 
(HIES). A risk-exposure index constructed based 
on HIES is also positively correlated with subse-
quent COVID-19 quarantines (+0.51) reported 
by the Bangladesh government and distress 
calls (+0.54).”.

4. We apply the same method to the Philippines and 
construct province and municipality level COVID-19 
risk exposure indices. Indices predict the spatial vari-
ation in COVID-19 cases confi rmed by the Filipino 
government (correlation +0.71 and +0.64 respective-
ly).

5. To ground-truth the migration-disease link un-
derlying our method, we conduct a phone- survey 
of 909 households across one Bangladeshi district, 
and fi nd that respondents in communities where a 
migrant returned in the 2 weeks prior are 242% more 
likely to report WHO/CDC COVID-19 symptoms. 
Returnee presence is the single largest risk factor
in multivariate analysis. Traveling away from the 
community is also predictive of symptom prevalence, 
which suggests that mobility is a key transmission 
vector.

1 INTERNATIONAL COVID-19 EXPOSURE 
INDEX
We construct an index of COVID-19 risk exposure for every 
country using data on country- pair migration links and the 
prevalence of COVID cases at the migration destinations. The 
index (formula provided in Section 5) can be interpreted as the 
expected number of returning migrants to each country who 
have been infected with COVID-19, given the spread of the 
virus in the countries they return from.

Figure 1 illustrates the growth in migration-related COVID-19 
exposure for a select set of migrant-sending countries. India 
and the Philippines were exposed early due to their emigrant 
exposure to the UAE and China, while Mexico was exposed 
much later given its close migration links to the U.S. The later 
and less intense exposure of South Africa, Tanzania, Bulgaria, 
Nigeria, Lao and others are due to their relatively low level 
of migration dependence, or their exposure to destinations 
where the outbreak occurred later.

In Figure 2 below, we illustrate the cross-country variation in 
our index in Africa and South and Southeast Asia. Among 
African countries where COVID-19 is not widespread yet 
(defi ned as having fewer than 2,000 cases), our index suggests 
that Angola, DR Congo, Ethiopia, Kenya, Ghana, Nigeria, and 
Zimbabwe are relatively more exposed. Table 1 provides a list 
of highly exposed countries by region, given their migration 
links to destinations where COVID-19 is present.
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FIGURE 1: Cumulative COVID-19 exposure over time.
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FIGURE 2: COVID-19 Exposure by Region
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In the full paper, we also construct a risk exposure index for 
Bangladeshi districts using survey data on migrants reported 
in the Household Income and Expenditure Survey (HIES 2016). 
This survey is conducted by the Bangladesh Bureau of Statistics 
and is similar to a World Bank Living Standards Measurement 
Study (LSMS) survey. We show that the destinations of migrants 
identifi ed in the HIES survey and the BMET migration permits 
predict the locations that travelers return from, as recorded by 

2 SUB-NATIONAL COVID-19 EXPOSURE 
INDEX

We apply the same method to construct sub-national 
COVID-19 risk exposure indices for Bangladeshi districts and 
sub-districts as well as Filipino provinces and municipalities. 
Figure 3a shows the district-level heat map of COVID-19 risk 
for Bangladesh, which is created using the local addresses 
of everyone who arrived in the country between December 
17 2019 and March 18 2020. Addresses were extracted from 
disembarkation cards collected by the Civil Aviation Authority 
of Bangladesh at airports. Figure 3b displays a upazila (sub- 
district) level index, constructed using addresses extracted 
from the database of migration permits allocated by the 
Bangladesh Bureau of Manpower, Employment and Training 
(BMET). These are measures of each sub-district’s exposure to 
global COVID-19 risk, in that the index value rises if the locality 
has strong migration links to destinations such as Italy, Singa-
pore or the United States, where the disease was already more 
prevalent.
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TABLE 1: Highly Exposed Countries by Region

AMERICAS

CARIBBEAN

EUROPE

MIDDLE EAST AND 
NORTH AFRICA

SOUTH AND 
CENTRAL ASIA

REGION HIGHLY EXPOSED COUNTRIES

Bolivia, El Salvador, Guatemala, Guyana, Honduras, Nicaragua, 
Suriname, Uruguay, Venezuela

Cuba, Haiti, Jamaica, Puerto Rico, Trinidad and Tobago

Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Hungary, 
Latvia, Lithuania, North Macedonia, Moldova, Slovakia

Armenia, Azerbaijan, Georgia, Iraq, Jordan, Lebanon, Sudan, 
Syria, Tunisia, Yemen

Afghanistan, Kazakhstan, Nepal, Sri Lanka, Uzbekistan

Cambodia, Hong Kong, Lao, Myanmar, Viet NamSOUTH EAST ASIA

Angola, Cameroon, DR Congo, Ethiopia, Kenya, Somalia, Cote 
D’Ivoire, Ghana, Nigeria, Senegal, Zimbabwe

SUB-SAHARAN 
AFRICA

NOTES: only countries where COVID is not widespread yet, defi ned as countries 
having fewer than 2,000 cases on April 19, 2020 are included in this analysis. Among 
these countries, those that have exposure values at or above the 67th percentile are 
classifi ed as being high risk.

FIGURE 3: Heat Maps for COVID-19 Risk Exposure in Bangladesh

N.B. CAAB Data is used for calculating the COVID-19 Risk Exposure Index at the District Level.
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CAAB at airports during December 2019 - March 2020. This 
makes our sub-national COVID-19 risk exposure index broadly 
applicable: this method can be applied to any country that re-
cords migration permits (e.g. Indonesia), or has an LSMS survey 
with a migration module (e.g. Cambodia, Ethiopia, Nigeria, 
Nepal, Uganda).

Next, we apply our method to the Philippines and construct 
province- and municipality- level risk exposure indices (Figure 
4). These are constructed using administrative data on interna-
tional migrants from the Overseas Worker Welfare Administra-
tion (OWWA).

3 VALIDATION

To explore whether our migration-based risk exposure index is 
informative about the likelihood of COVID-19 presence in the 
migrant-sending countries, we compare our index to the actual 
number of confi rmed cases and confi rmed deaths. Our coun-
try-level index is strongly correlated with both confi rmed cases 
(+0.67, p-value < 0.001; Figure 5a), and with confi rmed deaths 
(correlation +0.66, p-value < 0.001; Figure 5b).

We validate the district-level exposure index for Bangladesh 
based on CAAB data by fi rst comparing it to the number of 
people quarantined. The index value for a district is a strong 
predictor of subsequent quarantines in that district (correlation 
+0.52, p-value < 0.001; Figure 6a). Since quarantine decisions 
may be partly driven by migrant returnee presence in that dis-
trict, we also validate using the sub-district origins of distress 
calls to a government hotline between March 22 and April 12, 
2020. The district-level correlation between our CAAB return-
ee exposure index and distress calls is +0.77 (p-value < 0.001; 
Figure 6b). The indices constructed using BMET data are also 
strongly correlated with distress calls at the district (correlation 
+0.71, p-value <0 .001) and sub-district levels (+0.47, p-value < 
0.001, Figure 6d).

Finally, we validate the province- (correlation +0.71, p-level 
< 0.001; Figure 6d) and municipality-level (correlation +0.64, 
p-level < 0.001) Filipino index using COVID-19 cases reported 
by the Filipino government.
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FIGURE 5: Comparing Predicted COVID-19 Exposure with Confi rmed 
              Cases and Deaths

FIGURE 4: Heat Maps for COVID-19 Risk Exposure in the Philippines

N.B. Administrative Data is used for calculating the COVID-19 Risk Exposure Index at the Municipality Level. 
Names are provided only for the highest risk category.
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4 RETURNEES PREDICT EMERGENCE OF 
COVID-19 SYMPTOMS IN SURVEY DATA

We conducted phone surveys of a representative sample of house-

holds in one district in Bangladesh to assess the drivers and impacts 

of COVID-19. The survey contained a module on symptoms designed 

(with the help of public health experts) to indirectly identify the 

likelihood of COVID-19. Consistent with the logic of our risk exposure 

index, human movement is the strongest predictor of COVID-19 symp-

toms in this survey. Respondents in communities where at least one mi-

grant returned in the 2 weeks prior to the survey are signifi cantly more 

likely to report COVID-19 symptoms (odds ratio 2.57, CI: 1.34-4.96). 

Spending at least one day away from home in the same period was 

also strongly positively correlated with showing symptoms (odds ratio 

2.20, CI: 1.28-3.79). This supports the insight underlying our approach: 

human mobility is critical to the geographic spread of COVID-19.

5 DATA AND METHODS

To construct the indices, we defi ne a country’s COVID-19 risk exposure 

as follows:

                                                                                                               (1)

where i indexes migrant-sending developing countries, d indexes 

migrant-receiving destination countries, Mid is the stock of migrants 

from source country i in destination d, POPd is the total population in 

destination country. COVdt is a measure of COVID-19 outbreak intensity 

in destination country d on day t. The Mid data comes from the United 

Nations World Population Prospects (United Nations, 2017). COVID-19 

outbreak intensity (COVdt) is measured by the number of confi rmed 

cases reported by Johns Hopkins CSSE (Dong, Du, and Gardner, 

Lancet 2020), or in some specifi cations, the number of COVID-19 

related deaths. These data were downloaded from https://github.com/

CSSEGISandData/COVID-19 on April 19, 2020.

To conduct sub-national analysis for Bangladesh, we used disembar-

kation card data collected from incoming travelers to Bangladesh 

(December 2019 and March 2020) by the Civil Aviation Authority of 

Bangladesh (CAAB). The distress call data, aggregated at the sub- dis-

trict level, was shared by the Government of Bangladesh, who set-up 

multiple COVID-19 national hotline numbers that citizens can call into. 

The phone survey data came from a representative sample of house-

holds in one district in Bangladesh to assess the drivers and impacts 

of COVID-19.2 We received government administrative records on 

migrant permits from the Bureau of Manpower, Employment and Train-

ing (BMET) in Bangladesh. Household Income and Expenditure Survey 

(HIES) is a national representative household survey conducted by the 

Bangladesh Bureau of Statistics. Municipality level risk exposure index 

for Philippines is constructed using administrative data on international 
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     2. The sampling frame for this phone survey was the Cox’s Bazar Panel Survey (CBPS), a 
longitudinal study tracking a representative sample of 5,020 refugee and host community 
households in Cox’s bazar district of Bangladesh, living near and far from Rohingya refugee 
camps. We successfully contacted 909 of 1,255 households in April 2020, and 99% of con-
tacted households consented to participate.

FIGURE 6: Validating Sub-National Indices in Bangladesh and Philippines 
Using Quarantines, Distress Calls to Government Hotline and Testing 
Data

                                                                                                               (1)

EXPit = ∑
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d=1
Mid (     )COVdt(     )(     )POPd

(a) COMPARING CAAB DATA WITH QUARANTIES

(b) COMPARING CAAB DATA WITH DISTRESS CALLS

(c) COMPARING BMET DATA WITH DISTRESS CALLS (SUB-DISTRICT OR 
UPAZILA LEVEL)

(d) COMPARING FILIPINO INDEX WITH CONFIRMED CASES (PROVINCE LEVEL)



migrants from the Overseas Worker Welfare Administration (OWWA), 

which Dean Yang and Caroline Theoharides kindly shared.

6 POLICY IMPLICATIONS AND NEXT STEPS

We conducted this analysis to help policymakers in Bangladesh 

spatially target their COVID- 19 response policies. Whether it’s tar-

geting financial support, public health measures, or lockdowns and 

quarantines, policymakers need information at the sub-national level 

to prioritize and allocate limited resources more cost-effectively. The 

methods can be applied in other countries, and we stand ready to help 

implement if that would be useful. We expect that our method and 

validation checks will be helpful for decision makers who are currently 

operating in environments constrained by inadequate testing capacity. 

International bodies need to identify countries while national- and 

regional-level decision makers need to prioritize specific locations that 

require a rapid response in terms of enhancing hospital and screen-

ing capacity, flow of medical resources, or imposing more stringent 

social distancing and lockdown measures that are spatially targeted. 

Vulnerable areas may also need immediate social protection support 

and targeted relief for those at greatest risk of food insecurity. Our 

international analysis in Section 2 can also be useful for the global pol-

icy response. Global coordination by international bodies such as the 

World Health Organization remains critical, as the recent re-emergence 

of disease in China and Singapore after initial containment makes clear 

that it is difficult for countries to succeed in isolation without paying 

attention to disease progression in other regions.
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